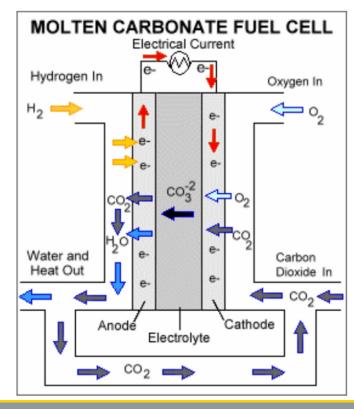
INDUSTRIAL TECHNOLOGIES PROGRAM

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases


This project will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas, thereby producing a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions.

Introduction

With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed for heating, creating an efficient combined heat and power (CHP) system. If the fuel cell is fueled from a renewable source, its use has the potential to reduce greenhouse gas emissions and natural gas consumption.

Derived from agricultural, industrial, and municipal waste streams or from byproducts of industrial processes, opportunity fuels are unconventional fuels that have the potential to become economically viable sources of power generation. One of the most common opportunity fuels, anaerobic digester gas (ADG), is produced from microorganisms' digestion of biomass. Composed mainly of methane (CH₄) and carbon dioxide (CO₂), ADG is similar in composition to natural gas.

Before ADG can successfully be used in fuel cells, the gas must be cleaned

Schematic of a molten carbonate fuel cell

of sulfur compounds that could otherwise lead to decreased performance or even system failure. Fuel cell manufacturers set stringent sulfur limits for feed gas, such as a maximum level of 10 parts per billion by volume (ppbv). However, unreformed ADG may have a sulfur content of up to 150 parts per million by volume (ppmv). A large reduction in ADG sulfur content is required; however, such large reductions cannot be achieved with conventional desulfurization techniques.

This project will develop a new high-capacity, expendable sorbent to remove sulfur compounds from ADG, thereby producing an essentially sulfur-free biogas meeting the cleanliness requirements of fuel cell power plants. This sorbent will reduce the operating costs of fuel cells consuming ADG and encourage increased use of opportunity fuels in place of natural gas.

Benefits for Our Industry and Our Nation

The desulfurization sorbent developed by this project is an enabling technology that will allow small-scale CHP fuel cell systems to operate on biogas.

Commercialization of this technology has the potential to achieve the following benefits:

- A decrease in the net energy intensity of industry by generating power and heat from existing waste streams
- A reduction in greenhouse emissions due to the venting or flaring of digester gases
- A reduction in solid waste due to the reduction of sorbent used
- A reduced desulfurization cost with extended sorbent replacement cycles and decreased sorbent consumption

Applications in Our Nation's Industry

Improved biogas reforming technology will benefit industries that employ anaerobic digesters, particularly those that feed the generated gas into fuel cells. The U.S. Environmental Protection Agency estimates that 0.75 quadrillion Btu (equivalent) of biogas were generated in 2008. That is nearly equivalent to the amount of energy used by 11 million automobiles per year.

Anaerobic digesters are used by industries that generate organic waste, including the following:

- Wastewater treatment
- Landfills, with both municipal and industrial waste
- Food processing
- Agriculture, including manure and crop waste, such as dairy farms

Project Description

The project objective is to develop a new, high-capacity, expendable sorbent to remove sulfur species from anaerobic digester gas, thereby providing a nearly sulfur-free biogas that meets the cleanliness requirements of fuel cell power plants. This sorbent bed will operate downstream of a bulk desulfurization system as a polishing bed and will remove any residual hydrogen sulfide (H₂S) and other organic sulfur species from the biogas. The sorbent is an enabling technology that will allow small-scale fuel cell combined heat and power (CHP) systems to operate on biogas as an alternative to natural gas.

Barriers

- Demonstrating the effectiveness of the sorbent under varying real-world biogas conditions
- Scaling up production of the sorbent to a commercial scale

 Providing demonstration results and economic analysis to convey the advantages of the new sorbent, as compared to existing competitors

Pathways

TDA Research Inc. (TDA) will optimize the key features of the sorbent, such as the concentration of active material and the amount and type of binders used. TDA will then increase the batch size of sorbent production over two orders of magnitude to support field demonstrations.

TDA and FuelCell Energy (FCE) will jointly perform a field demonstration using a small sorbent bed and a slipstream of biogas from a FCE digester. The team will then conduct a large-scale demonstration, desulfurizing all of the biogas for a 600-kilowatt plant.

A detailed cost analysis will be performed to assess the economic viability of the new sorbent technology based on field demonstration results.

Milestones

- Establishing sorbent production capabilities
- Screening sorbent variants to determine the best-performing option
- Testing the sorbent against competitive options in the laboratory
- Testing the sorbent in a slipstream setup at working digester
- Testing a prototype sorbent bed at a working digester

Commercialization

This project will lead to the development of a sorbent that is capable of removing complex sulfur compounds from aerobic digester gas at high efficiency. TDA will own the sorbent technology, manufacture the product, and provide it to FuelCell Energy and its distributors under a non-exclusive agreement.

Both TDA and FuelCell Energy have successfully commercialized and installed similar technologies in the past.

TDA previously developed and commercialized a related sorbent for the desulfurization of natural gas.

FuelCell Energy has built 19 fuel cell plants fed by anaerobic digester gas, giving the firm experience in the market and access to operating facilities for demonstrations and testing.

Fuel cells are an emerging market with promising growth potential as environmental regulations continue to tighten and the technology's cost decreases. Also, various tax incentives and grants are available to offset the installation and operation costs of fuel cell plants and anaerobic digesters.

Project Partners

TDA Research Inc. Wheat Ridge, CO Principal Investigator: Dr. Gokhan Alptekin galptekin@tda.com

FuelCell Energy Danbury, CT

November 2009

